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Derivation of the Bialynicki-Birula Photon Wave
Function From Three-Component Spinors

Jaroslaw Zaleśny1

A simple derivation of the Bialynicki-Birula photon wave function equation (equiva-
lent to the Maxwell equations) in the formalism of the three-component spinors has
been presented. The derivation has been based on two assumptions: (1) The relativistic
energy–momentum relation for a massless particle is satisfied; (2) The description of a
spin in three-dimensional spinor spaces S and Ṡ is the same in the limit when velocity
of the inertial frame moving along the photon propagation direction approaches c.
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1. INTRODUCTION

As it is well known the derivation of the Dirac equation may be based on two
independent statements (e.g., Brzezowski, 1995; Lopuszański, 1985):

• the relativistic energy–momentum relation for a massive particle must be
satisfied;

• the description of a spin in two-dimensional spinor spaces S and Ṡ (dotted
S) should be the same in the inertial frame in which the particle is in rest.

The Dirac equation is a compact record of the information contained in these
statements. The group SL(2, C) represented by 2 × 2 complex matrices with unit
determinant acts in S and Ṡ. The subspace of Hermitian tensors of S ⊗ Ṡ can be
identified with the space of relativistic four-vectors. In this way a close relation
between the group SL(2, C) and the Lorentz group is achieved.

In this paper, I intend to show that in the similar way it is possible to construct
the Bialynicki-Birula photon wave function equation (Bialynicki-Birula, 1994).
I will follow the analogy with the derivation of the Dirac equation as much as
possible. I will underline the similarities and differences.

There is a vast literature devoted to the spinor formulation of Dirac and
Maxwell equations. I am not able to give here a comprehensive account. Let

1 Institute of Physics, Technical University of Szczecin, Al. Piastów 48, 70-310, Szczecin, Poland;
e-mail: jarek@ps.pl.

2093

0020-7748/04/1000-2093/0 C© 2004 Springer Science+Business Media, Inc.



2094 Zaleśny

me restrict myself to mention only a few references. Among the most early are
perhaps (Laporte, 1931; Oppenheimer, 1931; Good, 1957; Moses, 1959). The
reader may find a comprehensive account on the Bialynicki-Birula photon wave
function in (Bialynicki-Birula, 1996) and (Kobe, 1999). An interesting discussion
on the “equivalence” of the Maxwell and Dirac equation could be found (e.g., in
Vaz and Rodrigues, 1995; Gsponer, 2002).

2. DERIVATION

In contrast to the case of Dirac equation, where the main object of interest are
two-dimensional complex vectors (i.e., Pauli spinors or simply spinors), we are
now interested in three-dimensional complex vectors (three component spinors).
For simplicity, from now on, I will call them also spinors. The spinors form a
vector space S.

|ξ〉 ∈ S, |ξ〉 =




ξ 1

ξ 2

ξ 3


 =




Ex + i Hx

Ey + i Hy

Ez + i Hz


 . (1)

The real quantities E and H have no physical interpretation as yet. They are
simply real and imaginary parts of the spinor. Apart from the space S we need also
its duplicate: the space Ṡ (dotted S).

In the case of Dirac equation the six-parameter SL(2, C) group acts in two-
dimensional spinor spaces. Therefore, it is possible to find a relation of the SL(2, C)
to the six-parameter Lorentz group. In the present case, we must now decide what
a group acts in the spaces of three-component spinors. We also need a relation of
the group to the Lorentz group, therefore it has to be a six-parameter group. This
requirement fulfils the O(3, C) group represented by complex 3 × 3 matrices U

U TU = 1, (2)

the superscript T means a transpose. The matrices U act in S and Ṡ in the following
way

U |ξ〉 = |ξ ′〉, Ū |ξ̇〉 = |ξ̇ ′〉, (3)

the bar over U denotes a complex conjugation. Note that

|ξ ′〉T|ξ ′〉 = (U |ξ〉)TU |ξ〉 = |ξ〉TU TU |ξ〉 = |ξ〉T|ξ〉 = E2 − H 2 + 2iE · H (4)

is an invariant of the transformation, whereas

〈ξ |ξ〉 = E2 + H 2, (5)

where 〈ξ | ≡ |ξ̄〉T. Let’s consider a tensor product S ⊗ Ṡ. We are interested only in
the subset of Hermitian tensors because the O(3, C) group acts inside the subset,
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i.e. after the transformation the Hermitian tensor T remains Hermitian

T ′ = U T Ū T. (6)

In the case of Dirac equation the 2 × 2 Hermitian tensors can be identified with
Lorentz four-vectors. In the present case the Hermitian condition is too weak. The
3 × 3 Hermitian tensors have too many parameters to be identified with relativistic
four-vectors. Therefore, we impose on the tensors one more condition reducing
the number of parameters to three

1

2
(T + T̄ ) = 1. (7)

The Hermitian tensors satisfying the condition have the following explicit
form

T ≡ Ti j =




1, i x3, −i x2

−i x3, 1, i x1

i x2 −i x1, 1


 , (8)

and the determinant

det T = 1 − (x1)2 − (x2)2 − (x3)2. (9)

Certainly, the tensors cannot be identified with four-vectors. However, one
may identify them with three-dimensional unit vectors. To this end, I impose on
the determinant the condition

det T = 0. (10)

Therefore the quantities x1, x2, x3 may be interpreted as direction cosines.
Later I will interpret the unit vector as a vector aiming at the direction of the
propagating photon in an inertial frame. The condition (7) and the tensors (8)
are not Lorentz-invariant, i.e. they are not invariant under the transformation (6).
However, they do not change their form under the following transformation

T ′ = RT RT, where RT R = 1. (11)

The real three-parameter matrices R form the subgroup O(3, R) of the O(3, C)
matrices U. Note that the transformations (11) as well as the transformations (6)
leave the determinant of T unchanged. Note also that the tensors (8) can be written
in the following form

T = 1 − x1S1 − x2S2 − x3S3, (12)

where 1 means here a 3 × 3 unit matrix and Sk , k = 1, 2, 3 are generators of the
rotation group, (Sk)ij = iεkij , where εkij is the antisymmetric Levi-Civita symbol.

The Dirac equation may be derived under the assumption that the pictures
of a spin in two-dimensional spaces S and Ṡ are identical in the inertial frame in
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which a massive particle is in rest. Here, we try to describe photon. And for the
photon there is no such inertial frame in which it rests. The transformations (3)
transform spinors from one inertial frame to another but no frame exists in which
the pictures of the spin in S and Ṡ are the same. Otherwise, the frame would be
distinguished, in contrast to the relativistic theory. However, we may choose the
following solution. Imagine that in an inertial frame we observe photon propagating
with the velocity c. We may describe the direction of the propagation with the help
of the direction cosines x1, x2, x3. Now let us try to make a transformation of the
spinor ξ to “the frame moving with velocity c” in the direction pointed by the unit
vector (x1, x2, x3). The transformation has to be understood in a sense of a limit.
Therefore, the transformation cannot be made by the O(3, C) matrices. It has to
be a 3 × 3 matrix depending on the three parameters x1, x2, x3. Moreover, if the
frame in which we observe the photon is rotated, the unit vector would change to
(x1′, x2′, x3′) but the form of the matrix has to be the same because of isotropy of
space. All these requirements fulfils the matrix T. What could be the result of the
very special transformation of the spinor |ξ〉? According to the special relativity
theory, in the inertial frame moving with the velocity c, time stops. If the spin
means something like “spinning,” then in this special frame the spin has to vanish
(no time, no motion). Therefore, as an equivalence of the condition of “the same
spin pictures in S and Ṡ” I propose for photon the following conditions

T |ξ〉 = 0, T̄ |ξ̇〉 = 0. (13)

Note that the condition (10) is in agreement with the requirement that the
equations must have nontrivial solutions. Taking complex conjugation of the sec-
ond equations of (13) and comparing it with the first one of the pair one may
conclude that

|ξ̇〉 = |ξ̄〉. (14)

The two equations of (13) can be written as a single one(
T 0

0 T̄

) ∣∣∣∣ξξ
〉

= 0. (15)

We have assumed that the spin state of the photon is described by the bispinor∣∣∣∣ξξ
〉
. (16)

As a matter of fact it is sufficient to solve one of the equations of (13), e.g.,
the first one in order to find |ξ〉, and then to find |ξ̇〉 from (14). Note, however, that
the whole construction requires in fact the “doubled” equation (15).

The equation T |ξ〉 = 0 may be written in the form

(1 − x1S1 − x2S2 − x3S3)|ξ〉 = 0. (17)
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We remember that the energy–momentum relation for zero mass particle is
the second foundation stone of our construction. Therefore, we can multiply (17)
by the magnitude of a three-dimensional momentum vector of the photon p =
E/c. Because the quantities x1, x2, x3 are direction cosines, therefore px1 = p1,
px2 = p2, px3 = p3 are components of the three-dimensional momentum p. Note
also that the condition (10)

(x1)2 + (x2)2 + (x3)2 = 1, (18)

after multiplication by p2 = E2/c2 reproduces the energy–momentum relation for
a zero mass particle

(p1)2 + (p2)2 + (p3)2 = E2

c2
. (19)

Thus, we may write the Equation (17) in the form

E
c
|ξ〉 = p · S|ξ〉. (20)

The equation can be rewritten in a vector notation as

E
c
|ξ〉 = ip × |ξ〉 (21)

using the mathematical identity

(a · S)b = ia × b. (22)

(a, b are any three-dimensional vectors). Iterating (20) or (21) and taking into
account that the energy–momentum relation E2/c2 = p2 is satisfied, an additional
condition on the spinor |ξ〉 is obtained

p · |ξ〉 = 0. (23)

Equations (21) and (23) are in fact vacuum Maxwell equations. We may call
them “classical” Maxwell equations, because they describe classical relativistic
massless particle with some “internal” structure (spin). Up to now there is nothing
“wave” or “quantum” in them. To obtain the well known usual Maxwell equations
we use Equation (1) and interpret the real and imaginary part of the spinor as an
electric and magnetic field, respectively

|ξ〉 = E + iH. (24)

Applying the “recipe for quantum mechanics”

E → i h
∂

∂t
, p → −i h∇, (25)

and taking real and imaginary parts of (21) and (23) one can obtain from (21)

∂t E = c∇ × H, ∂t H = −c∇ × E, (26)
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and from (23)

∇ · E = 0, ∇ · H = 0. (27)

From the above procedure it is quite clear that the usual Maxwell equations
are in fact quantum equations. It is simply a joke of Nature that the constant h
cancels out. It is a consequence of the zero mass of photon. And because photons
are bosons, the interference picture may be macroscopically observed.

Each of the Equations (13) separately leads to the Maxwell equations (26)
and (27). However, the full description of the photon spin requires the Equation
(15). After multiplying it by p = E/c and after some obvious manipulations one
obtains the Bialynicki-Birula photon wave function equation

i h ∂tψ = c

(
p · S 0

0 −p · S

)
ψ, (28)

where the photon wave function

ψ = (E+iH
E−iH

)
fulfils additional condition p · ψ= 0, (29)

here p ≡ −i h∇.
This equation may be regarded as a Schrödinger equation for photon.

3. ANOTHER POINT OF VIEW

The most important points in the derivation are Equations (8) and (13). If we
seek the equation for photon which is linear in operators of energy and momentum,
then the form (8) of tensor T = 1 − x̂ · S is unique with an accuracy of some trivial
transformations. Note, however, that because of the condition (29) (or (23), which
states that x̂ · |ξ〉 = 0, one may complicate the form of T without any consequence,
e.g.,

T ′ = 1 − x̂ · S + (x̂ · S)(x̂ · S) − x̂ · x̂. (30)

Tensors T ′ and T are indiscernible in action on spinor, because of the follow-
ing mathematical identity

[x̂ · x̂ − (x̂ · S)(x̂ · S)]|ξ〉 = x̂(x̂ · |ξ〉). (31)

Moreover, det T ′ = (1 − (x1)2 − (x2)2 − (x3)2)2. Therefore, one may use T ′

instead of T from the beginning. As earlier, the condition (23) follows then from
iteration as a result of energy–momentum relation. And this allows to cut down T ′

to T.
Let us present now apparently another approach to the derivation of vacuum

Maxwell equations. Once more we base our considerations on the relativity the-
ory. Suppose that all we know is that the electromagnetic field is described by
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an antisymmetric tensor Fµν . The electric E and magnetic H fields are simply
components of the tensor. They are transformed from one inertial frame to another
in the following way (Jackson, 1975)

E′ = γ (E + �β × H) − γ 2

γ + 1
�β(�β · E)

H′ = γ (H − �β × E) − γ 2

γ + 1
�β(�β · H). (32)

The fields E and H are not independent, therefore it is useful to introduce the
Silberstein complex vector (Silberstein, 1907)

F = E + iH. (33)

It contains entire information about the electromagnetic field. As a matter of
fact the Silberstein vector is nothing else as the spinor |ξ〉 (24). It transforms in
the following way

F′ = γ F − iγ �β × F − γ 2

γ + 1
�β(�β · F). (34)

With the help of the identity (22) it can be written as

1

γ
F′ =

[
(1 − �β · S) + γ

γ + 1
((�β · S)(�β · S) − β2)

]
F. (35)

Do not forget, however, that we want to describe photon—the particle moving
with velocity c. Let the direction of the photon in some inertial frame is given by the
direction cosines x1, x2, x3 and let the new inertial frame moves in the direction
with velocity β. Now go to the limit β → 1. In that limit β1 → x1, β2 → x2,
β3 → x3, 1/γ → 0 and γ /(γ + 1) → 1. We suppose also that in this limit F′

vanishes. Thus, from (35) one obtains

T ′F = 0, (36)

where T ′ is given by (30). As has been already discussed it may be cut down to

T F = 0. (37)

This is equivalent to the first of equations of (13). The second one could
be obtained starting with complex conjugation of the Silberstein vector. The fur-
ther procedure allowing to obtain the Maxwell equations is the same as already
described in the previous section.

4. SUMMARY

In this paper the simple derivation of the Bialynicki-Birula wave function
equation (equivalent in some sense to the vacuum Maxwell equations) has been
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presented in the language of the three-component spinors. It has been derived
on the basis of the relativistic energy–momentum relation for a massless parti-
cle and the Equation (13). The heuristic arguments leading to the Equation (13)
someone may find as controversial, however, the efficiency of this equation has
been demonstrated in the paper. Up to my knowledge the presented derivation is
original.
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